

INDIAN SCHOOL MUSCAT **FINAL EXAMINATION 2022 MATHEMATICS (041)**

CLASS: XII

DATE: 26-11-2022

TIME ALLOTED

: 3 HRS. MAXIMUM MARKS: 80

GENERAL INSTRUCTIONS:

- ❖ All questions are compulsory.
- This question paper consists of 38 questions divided into five sections A, B, C, D and E.
- ❖ Section A comprises of 18 MCQ of one mark each (from Q01 18) and Assertion-Reasoning based questions (from Q19 - Q20)
- Section B comprises of 05 questions of two marks each (from Q21 25).
- ❖ Section C comprises of 06 questions of three marks each (from Q26 31).
- ❖ Section D comprises 03 Case-study based questions (from Q32 34).
- ❖ Section E comprises of 04 questions of five marks each (from Q35 38).
- * There is no overall choice. However, internal choice has been provided in some questions. You must attempt only one of the alternatives in all such questions.

SECTION A (Question numbers 01 to 20 carry 1 mark each)

- Let the function f: $N \to N$ be defined by f(x) = 2x + 3, $\forall x \in N$. Then f is _____ 1.
 - a. Not onto
- b. bijective c. many-one
- d. none of these
- If the area of triangle with vertices (3, 2), (-1, 4) and (6, k) is 7 sq. units then the possible values of k 2. is/are
 - a. 3
- b. -4
- c. -3, 4
- d. 3, -4
- 3. If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and AB = I, then x + y

- c. 2
- d. None

- The value of $\int e^x \sec x (1 + \tan x) dx$ is 4.
 - a. $e^x \cos x + C$ b. $e^x \sec x + C$ c. $e^x \sin x + C$ d. $e^x \tan x + C$

5.	Write the number of point	s where $f(x) = x + 2 + x $	x - 3 is not differentiab	le.		
	a. 2	b. 3	c. 0	d. 1		
6.	Derivative of the function	$f(x) = \sin(x^2)$				
	a. $2\cos(x^2)$	b. $2x \cos(x^2)$	c. $2x^2\sin(x)$	d. 2 cos (x)		
7.	If $y = A e^{5x} + Be^{-5x}$ the	n , $\frac{d^2y}{dx^2}$ is equal to				
	a. 25y	b. 5y	c25y	d. 15y		
8.	The derivative of sin x wi	th respect to log x, is				
	a. cos x	b. $x \cos x$	c. $\frac{x}{\cos x}$	$d.\frac{\cos x}{x}$		
9.	The side of an equilateral perimeter.	triangle is increasing at t	he rate of 0.5 cm/s. Fin	d the rate of increase of its		
	a. 1.5 cm/s	b. 0.5 cm/s	c. 3 cm/s	d. 15cm/s		
10.	The total revenue received $R(x) = 3x^2 + 40x + 10$. The			n "PEACE DAY" is given by		
	a. 34010	b. 3401	c. 6410	d. 640		
11.	If $\frac{d}{dx}f(x) = g(x)$, then a	ntiderivative of g(x) is				
	a. f(x)	b. g(x)	c. $\frac{1}{2} [f(x)]^2$	d. $\frac{1}{2} [g(x)]^2$		
12.	$\int \frac{\sin\sqrt{x}}{\sqrt{x}} \ dx \text{ is equal to}$					
	a. $\cos \sqrt{x} + C$	b. $2\cos\sqrt{x} + C$	c. $-2\cos\sqrt{x} + $ C	d. $\sqrt{x} \cos \sqrt{x} + C$		
13.	If $\int \frac{1}{\sqrt{4-9x^2}} dx = \frac{1}{3} \sin^{-1}(kx) + C$, then the value of k is					
	a. 2	b. 4	c. $\frac{3}{2}$	d. $\frac{2}{3}$		
14.	If $\int_0^a 3x^2 dx = 8$, then the	he value of a is				
	a. 2	b. 3	c. 4	d. 8		
15.	The area of the region bounded by the curve $y = x^2$ and the line $y = 4$ is					
	a. $\frac{32}{2}$ sq. units	b. $\frac{32}{3}$ sq. units	4	d. $\frac{32}{5}$ sq. units		

If A is a square matrix such that $A^2 = A$, then, $(I + A)^2 - 3A$ is 16.

a. I

b. 2A

c. 3I

d. A

17. If $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$, then the value of k is

> 14 a.

b. 15

c. 16

d. 17

A vector in the direction of vector $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 15 is 18.

a. $\frac{\hat{\imath}-2\hat{\jmath}+2\hat{k}}{3}$ b. $15\hat{\imath}-30\hat{\jmath}+30\hat{k}$ c. $\hat{\imath}-2\hat{\jmath}+15\hat{k}$ d. $5\hat{\imath}-10\hat{\jmath}+10\hat{k}$

Following are Assertion-Reasoning based questions (from Q19 - Q20):

Read the following statements carefully to mark the correct option out of the options given below.

- (a) Assertion is true, Reasoning is true; Reasoning is a correct explanation for Assertion.
- (b) Assertion is true, Reasoning is true; Reasoning is not a correct explanation for Assertion.
- (c) Assertion is true, Reasoning is false.
- (d) Assertion is false, Reasoning is true.
- 19. **Assertion:** To define the inverse of the function $f(x) = \tan x$, any of the intervals $\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right) \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ can be chosen.

Reason: The branch having range $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is called principal value branch of the function $g(x) = tan^{-1} x$.

20. Assertion: The pair of lines given by $\vec{r} = \hat{\imath} - \hat{\jmath} + \lambda(\hat{\imath} + \hat{\jmath} - \hat{k})$ and $\vec{r} = 2\hat{\imath} - \hat{k} + \mu(\hat{\imath} + \hat{\jmath} - \hat{k})$

Reason: Two lines are parallel if the shortest distance is 0.

SECTION B

(Question numbers 21 to 25 carries 2 marks each)

Very short answer questions

For what value of 'k' is the following function continuous at x = 2? 21.

 $f(x) = \begin{cases} 2x + 1; x < 2 \\ k; x = 2 \\ 3x - 1; x > 2 \end{cases}$

22. The radius of an air bubble is increasing at the rate of $\frac{1}{2}$ cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?

Show that the function f given by $f(x) = x^3 - 3x^2 + 4x$, $x \in R$ is increasing on R.

23. If matrix
$$\begin{bmatrix} -2 & x-y & 5\\ 1 & b & 4\\ x+y & z & 7 \end{bmatrix}$$
 is symmetric. Find the values of x, y, z and b.

OR

Find x, if
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

24. Evaluate:
$$\begin{vmatrix} 2 + \sqrt{3} & 3 - \sqrt{2} \\ 3 + \sqrt{2} & 2 - \sqrt{3} \end{vmatrix}$$

25. Show that the points A
$$(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$$
, B $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and C $(7\hat{\imath} - \hat{k})$ are collinear.

SECTION C (Question numbers 26 to 31 carries 3 marks each) Short answer questions

26. Find the value of
$$tan^{-1}\left(tan\frac{2\pi}{3}\right) + sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

27. If
$$y = (tan^{-1}x)^2$$
, show that $(x^2 + 1)^2y_2 + 2x(x^2 + 1)y_1 = 2$

OR

If
$$x^m y^n = (x + y)^{m+n}$$
, prove that $\frac{d^2y}{dx^2} = 0$.

28. Evaluate
$$\int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$

OR

Evaluate
$$\int_{-1}^{2} |x^3 - x| dx$$

29. Find
$$\int x \sin^{-1} x \, dx$$

30. Find
$$\int \frac{(x^2+x+1)}{(x+2)(x^2+1)} dx$$

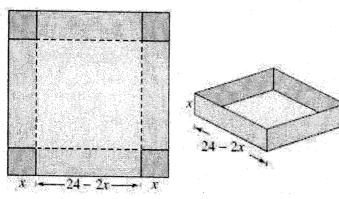
Find a vector which is perpendicular to both and
$$\vec{a}$$
 and \vec{b} and \vec{c} . $\vec{d} = 15$ where $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

OR

The two skew lines L_1 and L_2 are such that the Line L_1 passes through the point A(1, 2, 1) and its direction is along the vector $\vec{b}_1 = \hat{\imath} - \hat{\jmath} + \hat{k}$, while the Line L_2 passes through the point B(2, -1, -1) and its direction is along the vector $\vec{b}_2 = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$. Find the shortest distance between the two skew lines L_1 and L_2 .

This section contains three Case-study based questions (from Q32 - Q34).

32. A man has an expensive square shape piece of golden board of size 24 cm. It is to be made into a box without top by cutting a square from each corner and folding the flaps to form a box.



Based on the given information, answer the following questions.

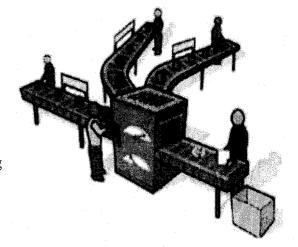
- (i) Write an expression for the volume of the open box in terms of x.
- (ii) In the first derivative test, if f'(x) changes its sign from positive to negative as x increases through c, then function attainsat c. (Fill in the blank)
- (iii) What should be the side of the square piece to be cut off from each corner of the board so that the volume is maximum?
- 33. A factory produces three products every day.

 Their production on a particular day is 45 tons. It is found that production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Let x, y and z be the production(in tons) of the first, second and the third product respectively.

Based on the given information, answer the following questions.

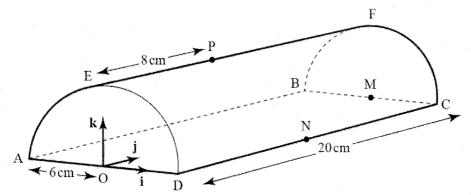
- (i) Write the equations in terms of x, y and z and express it in the matrix form AX = B
- (ii) Find A⁻¹

(ii) How much is the production of each product?



OR

34. The diagram shows a semi-circular prism with horizontal rectangular base ABCD. The vertical ends AED and BFC are semi-circles of radius 6 cm. The length of the prism is 20 cm. The mid-point of AD is the origin O, the midpoint of BC is M and the midpoint of DC is N. The points E and F are the highest points of the semi-circular ends of the prism. The point P lies on EF such that EP = 8 cm.



Coordinates of points A, D, P and M are (-6,0,0), (6,0,0), (0,8,6) and (0,20,0) respectively. Unit vectors $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} are parallel to OD, OM and OE respectively.

Based on the given information, answer the following questions.

- (i) Express each of the vectors \overrightarrow{PA} and \overrightarrow{PN} in terms of $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} .
- (ii) Calculate angle APN
- (iii) Find a vector perpendicular to \overrightarrow{PN} and \overrightarrow{PM}

OR

(iii) Find area of triangle MPN

Section E (Question numbers 35 to 38 carries 5 marks each)

- 35. Show that $R = \{(a, b): a, b \in A, |a b| \text{ is divisible by 4}\}$ where $A = \{x \in Z : 0 \le x \le 12\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2].
- 36. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2.

OR

Using integration find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

37. Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

OR

Find the equation of the line passing through the point (-1, 3, -2) and perpendicular to each of the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$.

38. Solve the following linear programming problem graphically: Maximise: Z = 2x + 5y subject to the constraints: $x \ge 0$, $y \ge 0$, $3x + y \le 6$, $2x + 4y \le 8$ and $x + y \le 4$. Also write the x and y coordinates of the point, at which Z is maximum.

****END OF THE QUESTION PAPER****

INDIAN SCHOOL MUSCAT FINAL EXAMINATION 2022 **MATHEMATICS (041)**

CLASS: XII

DATE: 26-11-2022

TIME ALLOTED : 3 HRS.

MAXIMUM MARKS: 80

GENERAL INSTRUCTIONS:

- ❖ All questions are compulsory.
- This question paper consists of 38 questions divided into five sections A, B, C, D and E.
- ❖ Section A comprises of 18 MCQ of one mark each (from Q01 18) and Assertion-Reasoning based questions (from Q19 - Q20)
- ❖ Section B comprises of 05 questions of two marks each (from Q21 25).
- ❖ Section C comprises of 06 questions of three marks each (from Q26 31).
- Section D comprises 03 Case-study based questions (from Q32 34).
- Section E comprises of 04 questions of five marks each (from Q35 38).
- ❖ There is no overall choice. However, internal choice has been provided in some of the questions. You must attempt only one of the alternatives in all such questions.

SECTION A (Question numbers 01 to 20 carry 1 mark each) Multiple choice questions. Select the correct options (from Q01 - Q18)

ıal to
ıal

- a. 25y
- b. 5y c. -25y
- d. 15y
- 2. If the area of triangle with vertices (3, 2), (-1, 4) and (6, k) is 7 sq. units then the possible values of k is\are
 - a. 3
- b. -4
- c. -3, 4
- d. 3, -4

3. If
$$P = \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 1 & -2 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $PQ = I$, then $a + b$

- b. -1
- c. 2

d. None

- 4. The value of $\int e^x \sec x (1 + \tan x) dx$ is
 - a. $e^x \cos x + C$ b. $e^x \sec x + C$ c. $e^x \sin x + C$ d. $e^x \tan x + C$

5.	The function $f(x) = x $ is					
	b. Continuous and dic. Continuous every	Ifferentiable everywhere ifferentiable nowhere where but differentiable where but differentiable	every			
6.	Derivative of the function	$f(x) = cos(x^2)$				
	a. $2\cos(x^2)$	b. $-2x \sin(x^2)$	c.	$2 x^2 \sin(x)$	d.	2 cos (x)
7.	Let the function $f: N \to I$	N be defined by $f(x) =$	2x +	$3, \forall x \in \mathbb{N}$. Then f is		 .
	a. Not onto	b. bijective	c.	Many one	d.	none of these
8.	The derivative of cos x w	ith respect to log x, is				
	a. sin x	bx sin x	c.	$\frac{x}{\sin x}$	d.	0S x x
9.	The side of an equilateral perimeter.	triangle is increasing at	the r	ate of 0.7 cm/s. Find t	he ra	ate of increase of its
	a. 2.1 cm/s	b. 0.2 cm/s	c.	3 cm/s	d.	21 cm/s
10.	The total revenue received from the sale of x souvenirs in connection with "PEACE DAY" is given by $R(x) = 3x^2 + 40x + 10$. The marginal revenue when 500 souvenirs sold is					
	a. 340	b. 3040	c.	6410	d.	640
11.	If $\frac{d}{dx}g(x) = f(x)$, then an	ntiderivative of f (x) is				
	a. g(x)	b. f (x)	c.	$\frac{1}{2} [g(x)]^2$	d.	$\frac{1}{2} [f(x)]^2$
12.	$\int \frac{\sin\sqrt{x}}{\sqrt{x}} \ dx \text{ is equal to}$					
	a. $\cos \sqrt{x} + C$	b. $2\cos\sqrt{x} + C$	c.	$-2\cos\sqrt{x} + C$	d.	$\sqrt{x}\cos\sqrt{x} + C$
13.	If $\int \frac{1}{\sqrt{4-9x^2}} \ dx = \frac{1}{3} \ s$	$in^{-1}(kx) + C$, then the	value	e of k is		
	a. 2	b. 4	c.	$\frac{3}{2}$	d.	$\frac{2}{3}$
14.	If $\int_0^a 3x^2 dx = 8$, then t	he value of a is				
	a. 2	b. 3	c.	4	d.	8

15. The area of the region bounded by the curve $y = x^2$ and the line y = 4 is

a. $\frac{32}{2}$ sq. units b. $\frac{32}{3}$ sq. units c. $\frac{3}{2}$ sq. units d. $\frac{32}{5}$ sq. units

If A is a square matrix such that $A^2 = A$, then, $(I + A)^2 - 3A$ is 16.

a. I

b. 2A

d. A

17. If $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$, then the value of k is

a. 14

b. 15

c. 16

d. 17

A vector in the direction of vector $2\hat{i} - \hat{j} + 2\hat{k}$ that has magnitude 12 is 18.

a. $\frac{2\hat{i}-\hat{j}+2\hat{k}}{3}$ b. $8\hat{i}-4\hat{j}+8\hat{k}$ c. $\hat{i}-2\hat{j}+15\hat{k}$ d. $5\hat{i}-10\hat{j}+10\hat{k}$

Following are Assertion-Reasoning based questions (from Q19 - Q20):

Read the following statements carefully to mark the correct option out of the options given below.

- (a) Assertion is true, Reasoning is true; Reasoning is a correct explanation for Assertion.
- (b) Assertion is true, Reasoning is true; Reasoning is not a correct explanation for Assertion.
- (c) Assertion is true, Reasoning is false.
- (d) Assertion is false, Reasoning is true.
- 19. **Assertion:** The pair of lines given by $\vec{r} = \hat{\imath} - \hat{\jmath} + \lambda(\hat{\imath} + \hat{\jmath} - \hat{k})$ and $\vec{r} = 2\hat{\imath} - \hat{k} + \mu(\hat{\imath} + \hat{\jmath} - \hat{k})$ are parallel.

Reason: Two lines are parallel if the shortest distance is 0.

20. **Assertion:** To define the inverse of the function $f(x) = \tan x$, any of the intervals $\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right) \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ can be chosen.

Reason: The branch having range $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is called principal value branch of the function $g(x) = \tan^{-1} x.$

SECTION B (Question numbers 21 to 25 carries 2 marks each)

- 21. Evaluate: $\begin{vmatrix} 2 + \sqrt{3} & 3 - \sqrt{2} \\ 3 + \sqrt{2} & 2 - \sqrt{3} \end{vmatrix}$
- Show that the points A $(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$, B $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and C $(7\hat{\imath} \hat{k})$ are collinear. 22.
- 23. If matrix $\begin{bmatrix} -2 & x-y & 5 \\ 1 & b & 4 \\ 1 & 7 \end{bmatrix}$ is symmetric. Find the values of x, y, z and b.

Find x, if
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

24. For what value of 'k' is the following function continuous at x = 2?

$$f(x) = \begin{cases} 2x + 1; x < 2 \\ k; x = 2 \\ 3x - 1; x > 2 \end{cases}$$

The radius of an air bubble is increasing at the rate of $\frac{1}{2}$ cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?

OR

Show that the function f given by $f(x) = x^3 - 3x^2 + 4x$, $x \in R$ is increasing on R.

SECTION C (Question numbers 26 to 31 carries 3 marks each)

26. Find the value of
$$tan^{-1}(1) + cos^{-1}(\frac{-1}{2}) + sin^{-1}(\frac{-1}{2})$$

27. Find
$$\int \frac{dx}{3x^2 + 13x - 10}$$

28. Find
$$\int x \sin^{-1} x \ dx$$

29. If
$$y = (tan^{-1}x)^2$$
, show that $(x^2 + 1)^2y_2 + 2x(x^2 + 1)y_1 = 2$

OR

If
$$x^m y^n = (x + y)^{m+n}$$
, prove that $\frac{d^2y}{dx^2} = 0$.

30. Evaluate
$$\int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$

OR

Evaluate
$$\int_{-1}^{2} |x^3 - x| dx$$

Find a vector which is perpendicular to both and \vec{a} and \vec{b} and \vec{c} . $\vec{d} = 15$. If $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} - \hat{\jmath} + 4\hat{k}$.

OR

The two skew lines L_1 and L_2 such that Line L_1 passes through the point A(1, 2, 1) and its direction is along the vector $\vec{b}_1 = \hat{\imath} - \hat{\jmath} + \hat{k}$, while Line L_2 passes through the point B(2, -1, -1) and its direction is along the vector $\vec{b}_2 = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$. Find the shortest distance between the two skew lines L_1 and L_2 .

Section D This section contains three Case-study based questions (from Q32 - Q34).

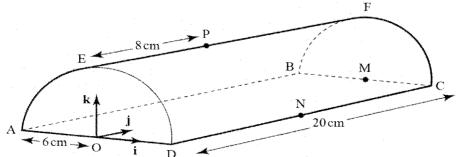
32. A factory produces three products every day. Their production on a particular day is 45 tons. It is found that production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Let x, y and z be the production(in tons) of the first, second and the third product respectively.

Based on the given information, answer the following questions.

- (i) Write the equations in terms of x, y and z and express it in the matrix form AX = B
- (ii) Find A⁻¹

OR

- (ii) How much is the production of each product?
- 33. The diagram shows a semi-circular prism with horizontal rectangular base ABCD. The vertical ends AED and BFC are semi-circles of radius 6 cm. The length of the prism is 20 cm. The mid-point of AD is the origin O, the midpoint of BC is M and the midpoint of DC is N. The points E and F are the highest points of the semi-circular ends of the prism. The point P lies on EF such that EP = 8 cm.



Coordinates of points A, D, P and M are (-6,0,0), (6,0,0), (0,8,6) and (0,20,0) respectively. Unit vectors $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} are parallel to OD, OM and OE respectively.

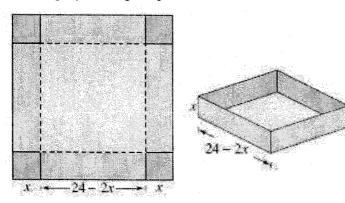
Based on the given information, answer the following questions.

- (i) Express each of the vectors \overrightarrow{PA} and \overrightarrow{PN} in terms of $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} .
- (ii) Calculate angle APN
- (iii) Find a vector perpendicular to \overrightarrow{PN} and \overrightarrow{PM}

OR

(iii) Find area of triangle MPN

34. A man has an expensive square shape piece of golden board of size 24 cm. It is to be made into a box without top by cutting a square from each corner and folding the flaps to form a box.



Based on the given information, answer the following questions.

- (i) Write an expression for the volume of the open box.
- (iii) What should be the side of the square piece to be cut off from each corner of the board so that the volume is maximum?

Section E (Question numbers 35 to 38 carries 5 marks each)

35. Solve the following linear programming problem graphically:

Maximise: Z = 5x + 2y subject to the constraints: $x \ge 0$, $y \ge 0$, $x - 2y \le 2$, $3x + 2y \le 12$ and $-3x + 2y \le 3$. Also write the x and y coordinates of the point, at which Z is maximum.

36. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

OR

Using integration find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

- 37. Show that $R = \{(a, b): a, b \in A, |a b| \text{ is divisible by 4} \}$ where $A = \{x \in Z : 0 \le x \le 12\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2].
- 38. Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

Find the equation of the line passing through the point (-1, 3, -2) and perpendicular to each of the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$.

****END OF THE QUESTION PAPER***

ROLL		
NUMBER	 	

SET

C

INDIAN SCHOOL MUSCAT **FINAL EXAMINATION 2022 MATHEMATICS (041)**

CLASS: XII

DATE: 26-11-2022

TIME ALLOTED MAXIMUM MARKS: 80

GENERAL INSTRUCTIONS:

All questions are compulsory.

❖ This question paper consists of 38 questions divided into five sections A, B, C, D and E.

Section A comprises of 18 MCQ of one mark each (from Q01 - 18) and Assertion-Reasoning based questions (from Q19 - Q20)

Section B comprises of 05 questions of two marks each (from Q21 - 25).

❖ Section C comprises of 06 questions of three marks each (from Q26 - 31).

Section D comprises 03 Case-study based questions (from Q32 - 34).

❖ Section E comprises of 04 questions of five marks each (from Q35 - 38).

❖ There is no overall choice. However, internal choice has been provided in some of the questions. You must attempt only one of the alternatives in all such questions.

SECTION A (Question numbers 01 to 20 carry 1 mark each) Multiple choice questions. Select the correct options (from Q01 - Q18)

- The function f(x) = |x| is 1.
 - a. Continuous and differentiable everywhere
 - b. Continuous and differentiable nowhere
 - c. Continuous everywhere but differentiable everywhere except 0
 - d. Continuous everywhere but differentiable nowhere
- If the area of triangle with vertices (3, 2), (-1, 4) and (6, k) is 7 sq. units then the possible values of k 2. is\are

3. If
$$A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $AB = I$, then $x + y$

4.	The value of $\int e^x \sec x$ (1)	$+\tan x$) dx is				
	a. $e^x \cos x + C$	b. $e^x \sec x + C$	c.	$e^x \sin x + C$	d.	$e^x \tan x + C$
5. Let the function f: $N \to N$ be defined by $f(x) = 2x + 3$, $\forall x \in N$. Then f is						
	a. Not onto	b. bijective	c.	many-one	d.	none of these
6.	Derivative of the function	$f(x) = sin(x^2)$				
	a. $2\cos(x^2)$	b. $2x \cos(x^2)$	c.	$2 x^2 \sin(x)$	d.	2 cos (x)
7.	If $y = A e^{7x} + Be^{-7x}$ the	n , $\frac{d^2y}{dx^2}$ is equal to				
	a. 14y	b. 7y	c.	-7y	d.	49y
8.	The derivative of sin x with	th respect to log x, is				
	a. cos x	b. $x \cos x$	c.	$\frac{x}{\cos x}$	d.	$\frac{\cos x}{x}$
9.	The side of an equilateral perimeter.	triangle is increasing at the	ne ra	ate of 0.5 cm/s. Find	the ra	ate of increase of its
	a. 1.5 cm/s	b. 0.5 cm/s	c.	3 cm/s	d.	15cm/s
10.	The total revenue received $R(x) = 3x^2 + 40x + 10$. The	I from the sale of x souve e marginal revenue when	nirs 100	in connection with ") souvenirs sold is	PEA	ACE DAY" is given by
	a. 34010	b. 3401	c.	6410	d.	640
11.	If $\frac{d}{dx}f(x) = g(x)$, then an	tiderivative of $g(x)$ is				
	a. $f(x)$	b. g(x)	c.	$\frac{1}{2} [f(x)]^2$	d.	$\frac{1}{2} [g(x)]^2$
12.	$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$ is equal to					
	a. $\cos \sqrt{x} + C$	b. $2\cos\sqrt{x} + C$	c.	$-2\cos\sqrt{x} + C$	d.	$\sqrt{x}\cos\sqrt{x} + C$
13.	If $\int \frac{1}{\sqrt{4-9x^2}} \ dx = \frac{1}{3} \ si$	$n^{-1}(kx) + C$, then the va	alue	of k is		
	a. 2	b. 4	c.	$\frac{3}{2}$	d.	2/3
14.	If $\int_0^a 3x^2 dx = 8$, then the	ne value of a is				
	a. 2	b. 3	c.	4	d.	8

- The area of the region bounded by the curve $y = x^2$ and the line y = 4 is 15.

 - a. $\frac{32}{2}$ sq. units b. $\frac{32}{3}$ sq. units c. $\frac{3}{2}$ sq. units d. $\frac{32}{5}$ sq. units
- 16. If A is a square matrix such that $A^2 = A$, then, $(I + A)^2 3A$ is
 - a.

- b. 2A
- c. 3I

d. A

- If $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$, then the value of k is
 - a. 14
- b. 15

c. 16

- d. 17
- A vector in the direction of vector $\hat{i} 2\hat{j} + 2\hat{k}$ that has magnitude 6 is

a.
$$\frac{\hat{\imath}-2\hat{\jmath}+2\hat{k}}{3}$$
 b. $2(\hat{\imath}-2\hat{\jmath}+2\hat{k})$ c. $\hat{\imath}-2\hat{\jmath}+15\hat{k}$

- d. $5\hat{i} 10\hat{j} + 10\hat{k}$

Following are Assertion-Reasoning based questions (from Q19 - Q20):

Read the following statements carefully to mark the correct option out of the options given below.

- (a) Assertion is true, Reasoning is true; Reasoning is a correct explanation for Assertion.
- (b) Assertion is true, Reasoning is true; Reasoning is not a correct explanation for Assertion.
- (c) Assertion is true, Reasoning is false.
- (d) Assertion is false, Reasoning is true.
- **Assertion:** To define the inverse of the function $f(x) = \tan x$, any of the intervals $\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right) \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ can be chosen.

Reason: The branch having range $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is called principal value branch of the function $g(x) = \tan^{-1} x$.

Assertion: The pair of lines given by $\vec{r} = \hat{\imath} - \hat{\jmath} + \lambda(\hat{\imath} + \hat{\jmath} - \hat{k})$ and $\vec{r} = 2\hat{\imath} - \hat{k} + \mu(\hat{\imath} + \hat{\jmath} - \hat{k})$ 20. are parallel.

Reason: Two lines are parallel if the shortest distance is 0.

SECTION B (Question numbers 21 to 25 carries 2 marks each) Very short answer questions

If matrix $\begin{bmatrix} -2 & x-y & 5 \\ 1 & b & 4 \\ x+y & z & 7 \end{bmatrix}$ is symmetric. Find the values of x, y, z and b. 21.

Find x, if
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

- 22. Show that the points A $(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$, B $(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and C $(7\hat{\imath} \hat{k})$ are collinear.
- 23. For what value of 'k' is the following function continuous at x = 2?

$$f(x) = \begin{cases} 2x + 1; x < 2 \\ k; x = 2 \\ 3x - 1; x > 2 \end{cases}$$

- 24. Evaluate: $\begin{vmatrix} 2 + \sqrt{3} & 3 \sqrt{2} \\ 3 + \sqrt{2} & 2 \sqrt{3} \end{vmatrix}$
- 25. The radius of an air bubble is increasing at the rate of $\frac{1}{2}$ cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?

OR

Show that the function f given by $f(x) = x^3 - 3x^2 + 4x$, $x \in R$ is increasing on R.

SECTION C (Question numbers 26 to 31 carries 3 marks each)

- 26. Find $\int \frac{(x^2+x+1)}{(x+2)(x^2+1)} dx$
- 27. If $y = (tan^{-1}x)^2$, show that $(x^2 + 1)^2y_2 + 2x(x^2 + 1)y_1 = 2$

OR

If
$$x^m y^n = (x + y)^{m+n}$$
, prove that $\frac{d^2y}{dx^2} = 0$.

28. Evaluate $\int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$

OR

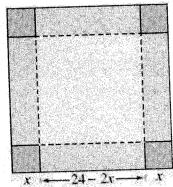
Evaluate
$$\int_{-1}^{2} |x^3 - x| dx$$

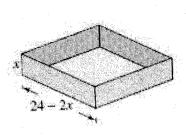
- 29. Find $\int x \sin^{-1} x \ dx$
- 30. Find the value of $tan^{-1}\left(tan\frac{2\pi}{3}\right) + sin^{-1}\left(\sin\frac{2\pi}{3}\right)$
- 31. Find a vector which is perpendicular to both and \vec{a} and \vec{b} and \vec{c} . $\vec{d} = 15$. where $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$.

The two skew lines $m{L_1}$ and $m{L_2}$ such that Line $m{L_1}$ passes through the point A(1, 2, 1) and its direction is along the vector $\vec{b}_1 = \hat{\imath} - \hat{\jmath} + \hat{k}$, while Line L_2 passes through the point B(2, -1, -1) and its direction is along the vector $\vec{b}_2=2\hat{\imath}+\hat{\jmath}+2\hat{k}$. Find the shortest distance between the two skew lines L_1 and L_2 . Section D

This section contains three Case-study based questions (from Q32 - Q34).

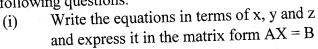
A man has an expensive square shape piece of golden board of size 24 cm. It is to be made into a box without top by cutting a square from each corner and folding the flaps to form a box. 32.





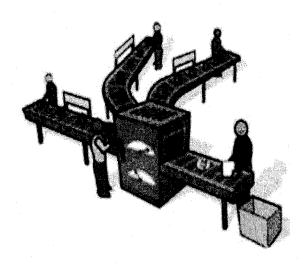
Based on the given information, answer the following questions.

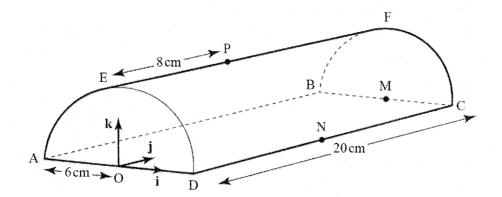
- Write an expression for the volume of the open box. (i)
- In the first derivative test, if f'(x) changes its sign from positive to negative as x increases (ii) through c, then function attains at c. (Fill in the blank)
- What should be the side of the square piece to be cut off from each corner of the board so (iii) that the volume is maximum?
- A factory produces three products every day. 33. Their production on a particular day is 45 tons. It is found that production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Let x, y and z be the production(in tons) of the first, second and the third product respectively. Based on the given information, answer the following questions.



Find A-1 (ii)

- How much is the production of each (ii) product?
- The diagram shows a semi-circular prism with horizontal rectangular base ABCD. The vertical ends AED and BFC are semi-circles of radius 6 cm. The length of the prism is 20 cm. The mid-point of AD 34. is the origin O, the midpoint of BC is M and the midpoint of DC is N. The points E and F are the highest points of the semi-circular ends of the prism. The point P lies on EF such that EP = 8 cm.





Coordinates of points A, D, P and M are (-6,0,0), (6,0,0), (0,8,6) and (0,20,0) respectively. Unit vectors $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} are parallel to OD, OM and OE respectively.

Based on the given information, answer the following questions.

- (i) Express each of the vectors \overrightarrow{PA} and \overrightarrow{PN} in terms of $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} .
- (ii) Calculate angle APN
- (iii) Find a vector perpendicular to \overrightarrow{PN} and \overrightarrow{PM}

OR

(iii) Find area of triangle MPN

Section E (Question numbers 35 to 38 carries 5 marks each)

35. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

OR

Using integration find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

- 36. Solve the following linear programming problem graphically: Maximise: Z = 100x + 50y subject to the constraints: $x \ge 0$, $y \ge 0$, $x + y \le 300$, $360x + 120y \le 72000$ and $-x + y \le 200$. Also write the x and y coordinates of the point, at which Z is maximum.
- 37. Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

OR

Find the equation of the line passing through the point (-1, 3, -2) and perpendicular to each of the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$.

38. Show that $R = \{(a, b): a, b \in A, |a - b| \text{ is divisible by 4} \}$ where $A = \{x \in Z : 0 \le x \le 12\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2].

****END OF THE QUESTION PAPER****